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The van der Pol-Krylov-Bogolubov averaging method [1-5], in a form described earlier [6], for systems with constraints, is used 
to investigate the dynamics of a particle on a smooth surface which is performing rapid vibration in a conservation force field. 
The general case of a solid vibrating surface is investigated, and also the case of an ellipsoid with pulsating axes. © 1999 Elsevier 
Science Ltd. All rights reserved. 

It is not always useful, when considering a mechanical system with constraints to change to Lagrange 
equations of the second kind, eliminating the constraint equations. It is often impracticable. Hence, in 
many applications, it is better to use the Lagrange equations of the first kind, including the constraint 
reactions. In this paper we consider ideal holonomic constraints which depend on time (2r~/co)- 
periodically, where the frequency co is very high. We will assume that the amplitude of the velocity 
oscillations remains bounded when co ~ oo. 

Under these conditions, the motion can be split into fast and slow components, and the fast component 
can then be expressed in terms of the slow one, while the evolution of the slow component can be 
described by averaged equations of motion. The constraint equation is also averaged over fast time. 
The averaged equations contain a new force, which arises as a result of the non-linear interaction of 
the vibrations, and is referred to as the vibrogenic force. The term "vibration force", widely used in the 
literature, seems inappropriate, since this force is autonomous (it is independent of the fast time), 
although it has a vibration origin. 

In this paper we analyse two particular problems. The first of these is the motion of a particle in a 
gravitational field along an arbitrary smooth surface, which vibrates while keeping its shape. When the 
surface is a sphere (or a circle on a plane) the classical problem of the motion of a pendulum with a 
vibrating pivot is obtained ([1], see also [2-5]). Note that the use of Lagrangian curvilinear coordinates, 
even when this is possible, usually requires the introduction of transcendental functions, which gives 
rise to well-known difficulties in numerical analysis. The formalism used here is free from this drawback. 
Its effectiveness is demonstrated using the example of an elliptic pendulum. 

The second problem is the motion of a particle in a gravitational field along an ellipsoid, which vibrates 
about a certain equilibrium position; both rotational vibration and oscillations of the axes of the ellipsoid 
are allowed. 

In both cases, we indicate the limitations on the vibration, for which equilibrium is preserved 
irrespective of its intensity (as is well known, (2n/o3)-periodic modes of the original system correspond 
to equilibria of the averaged system). Since the vibrogenic force in the averaged equations is a potential 
force [6], Lagrange's theorem is applicable for their stability. The results obtained indicate diverse 
possibilities for the vibration equation as regards the stability of equilibrium. 

In this paper we consider a system without friction. Note that the Rayleigh friction force, which is 
linear in the velocity, enters without change into the averaged equations, making the stable equilibria 
asymptotically stable and preserving the instability of the equilibria. 

1. F O R M U L A T I O N  OF THE P R O B L E M  AND 
THE AVERAGE EQUATIONS 

The motion of a particle in a conservative force field with potential energy Valong a vibrating surface 
will be described by the Lagrange equations of the first kind 

=-VV(x)-Av~ (1.1) 
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H(x, x) = 0, x = cot (1.2) 

Here x is an unknown vector function with values x(t) in R 3, A is the Lagrange multiplier, and AVH is 
the reaction of the ideal constraint (1.2). It is assumed that H depends 2n-periodicaUy on the fast time 
z. The frequency o3 is a large parameter. 

We will assume in addition, that the function • as o3 ~ 0% allows for the asymptotic form 

H(x,x) ='~(x)+l~p(x,x)+O(e2), e = 1/O (1.3) 

where the mean d~(x) = 0 for all x. Taking into account the 2n-periodicity, the mean is defined by the 
equation 

1 2x "~(x) = 7.- l H(x,'Oax (1.4) 
z ~  0 

Note that when O depends smoothly on a it is sufficient, henceforth, to use the value • when 
~ 0 .  

We will further assume that the equation 

6 (x )=O (1.5) 

defines a closed smooth surface F in R 3 where VO(x) ~ 0 when x e F. 
At each pointx e F we will define projectors Px and Qx onto the tangential plane and onto the normal 

respectively 

Pxhfh-~-2(h,~)~, Qxh=~-2(h,~)~, ~=V'~, ~2 =(~,~) (1.6) 

for any vector field h on F. 
We will further consider the problem of the (2n/o3)-periodic solutions of system (1.1) and (1.2), and 

also the Cauehy problem 

x(0) =x0, 2(0) = Vo (1.7) 

In order that these conditions should be compatible with the constraint, it is necessary for the following 
equations to be satisfied 

H(x0,0) = 0, Q~,(x0,0) + (VH(x0,0),v 0) = 0 

The asymptotic solution of both problems (x0 and v 0 are independent of o)  has the form [2, 3] 

x = x'(0 + o-1~(x, ~), h = XCt) + oZ.(x, ~) (1.8) 

The fast unknowns ~, L are found from the system 

~" = - ~ ,  ~ = 0, ~ = 0 (1.9) 

( ~ ) + ~  = O, ~ = ~(~) = VO(.~) (1.10) 

The prime denotes differentiation with respect to x; ~ is present as a parameter. The solution of system 
(1.9), (1.10) has the form 

~ = - I ~ ,  g = ~ ; - a ,  Z,=cp,,~-2 (1.11) 

where ~t is a function, which is uniquely defined by the conditions 

g" = ~,, g = 0 (1.12) 

Substituting (1.8) into (1.1) and (1.2) and taking (1.11) into account we obtain the averaged system 
[6] 

x = -V V(,~) - V V~ (~) - XV~ (1.13 ) 

0(~) = 0 (1.14) 
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The second term in (1.13) is the vibrogenic force, and the vibrogenic potential energy corresponding 
to it is 

v, = -~ /2~  =-1/2~0'~; -~ (1.15) 

If we solve the Cauchy problem, the asymptotic initial conditions must be taken in the form 

• ( o )  = x0 ,  x ( 0 )  = v o - ~ ' (0 ,  x o )  = u 0 + ~0'(o, x0 K - 2 ;  

Here  the condition of  tangency of the average velocity 2(0) to the surface (1.14) is satisfied by virtue 
of  (1.10); the equilibrium of the averaged system (1.13), (1.14) corresponds to the (2rr/co)-periodic 
solutions of the initial system. 

The remaining part of this paper is devoted to analysing the stability of the equilibria of system (1.13), 
(1.14) when a gravitational force acts on the particle such that 

V = Vg = (-  g, x) (1.16) 

The vertical axis is directed upwards. The acceleration vector of the gravitational force is then 
g = (0, 0, -g) .  

2. A P A R T I C L E  ON A S O L I D  V I B R A T I N G  S U R F A C E  

We will assume that a point mass moves along a surface 

• (Wt(x)x) = 0 (2.1) 

where W~(x) is a smooth family of motions (isometric transformations) of the space R 3, defined for all 
x ~ R and for small e e R. The dependence on • is assumed to be 2n-periodic. We will assume that for 
small e the following asymptotic equation is satisfied uniformly with respect to x ~ R 

W~(x) = I + eU(x) + O(e2), e ---) 0 (2.2) 

where U- = 0. Hence, the surface (2.1), without changing its shape, executes rapid vibration about a 
certain mean position. 

The equation of  motion (1.1) for a particle acted upon by a gravitational force has the form 

2 = g - AV~ (2.3) 

If we ascribe to the parameter e the meaning of time, from the equation 

U(x)x = d I de I~= 0 W~ (x)x (2.4) 

it will be seen that U(x), like the velocity of a solid, allows of the representation 

U(x)x = ~(x) + S(x)x (2.5) 

Here  rl(x ) is independent of x and specifies translational motion, while the operator function S(x) 
corresponds to rotational motion. For each x the operator S(x) is skew symmetric: S*(x) = -S(x) .  In 
the case o f R  3 we can introduce the pseudovector q(x) of the angular velocity, in which ease S(x)x = q x x. 

We will now specify in more detail the vibrogenic potential energy (1.15) for the case considered. 
The constraint equation (2.1), in view of (2.2), can be written as follows: 

• (x) + e(U(x)x,~(x)) + O(e 2) = 0, e ---) 0; ~(x) = VO(x) (2.6) 

i.e. in this case 

~(x, x) = (4, u(x)x)  = (~, ~(~)) + (4, s(x)x) 

Substituting (2.7) into (1.15) we obtain the representation of V¢ in the form 

= v,. + + v.. 

v,~ = - ,/2 ( , , (x) ,  n ' )~ ,  v," = - ,/2 ( , , (x) ,  s ,~)  ~, v 2  s = - ( , , ,  n ' ) ( , , ,  s '~ )  

(2.7) 

(2.8) 
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Here n = n(x) = ~(x)/I ~ I(~ = V~) is the field of the unit vectors normal to F, defined in a certain 
neighbourhood of the surface F: O(x) = 0. The terms V~, V s, V ~  denote the contributions to the 
vibrogenic potential energy from the translational vibration, the rotational vibration and from their 
interaction, respectively. 

The averaged equations are written in the form 

= g - VV~,(2) - XV~(2), ~(2) = 0 (2.9) 

In coordinate form we have the expressions 

V~ = - l//2 ni(x)nk (x)eit, eit= rl'irl' k 

V s = - ~  xlt(x x n)i(x x n)k , Xik  = q'q'k (2.10) 

v~ s = -v~knt(x x n),, v~k = r i m  

Here r ! = (111, r12, r13) defines the translational velocity of the vibration ~1, while q = (ql, q2, q3) defines 
the angular velocity q'. The matrices (e/k) and (x/k) are symmetrical and positive (although not always 
positive definite). It emerges that the general vibration is specified by 6 + 6 + 9 = 21 parameters eik, 
×/k (1 ~< k ~< 3) and v/k (1 ~ i ~< k ~< 3). It can be proved that they are independent, so that any of the 
combinations can be reafised by an appropriate choice of the vibration. 

Stabilizing and destabilizing action of the vibration. We will consider the case when the equilibrium 
x0 = 0 (which is taken as the origin of coordinates), which occurs when there is no vibration, is also 
preserved when it is present, and, moreover, regardless of the absolute values of the vector 11 and the 
pseudo-vector q. We will obtain the conditions for such conservation and we will investigate how the 
vibration affects the stability. 

Thus, we will assume that O(0) = 0, and, at the point x = 0, the equilibrium equation 

g -  AV~ =0, A=(g ,n ) / IV~ l  (2.11) 

is satisfied. 
The equilibriumxo = 0 is preserved after introducing the vibration if the vibrogenic force VV~ at the 

point x = 0 is vertical. 
In the neighbourhood of zero, the surface F can be specified by the equationx3 = F(xbx2). By rotating 

the Xl and x2 axes in the horizontal plane we can reduce the second differential of the function F to the 
sum of squares and write the equation of the surface in the form 

x3--F(x , ,x2)=l  (b,x'( +b2x2)+l (c3o x3 +c2,x'~x2 +c,2x,x~ +Co3X~)+... (2.12) 

Correspondingly, for the components of the normal field 

n=(nl,n2,n3)= (-Fxj'-Fx2'I) 
(I+F~ + F~2 )J~ 

we obtain the following expansions in Taylor series up to terms of the second order 

n, = - b  Ix I + n~ 2) (x  I , x 2) + . . . ;  n~ 2) = - ~ (3c30x ? + 2c21 x I x 2 + ci 2x22 ) 

/12 = - b 2 x  2 + n l  2) (x, ,  x 2 ) + . . . ;  ~ )  = - I/6 (c21Xl 2 + 2c12 X' x 2 + 3c03 X2 ) 

n3 = 1 + 4 = -  ' A ( b ? g  + b d) 
Substituting these expansions into (2.10) we obtain 

2V~ ---- --F..,33 + 2(gl3blX I + ,f,23b2x2) + (E33 - ,e_,l i ) b?x  ? -- 

-2blb2El2Xix2 +(E33 -- E22)b22x22 -- 2(EI3tI~ 2) + E2371(22)) + . . .  

(2.13) 
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V~ S _- v 3 2 x  I - v 3 1 x  2 - v i 2 b l x  ? + [ (Vl l  - v 3 3 ) b  I + (v33 - v 2 2 ) b 2 ] x i x  2 + v2162 x 2  + .... 

In order  that the zeroth equilibrium of the averaged equations (2.9) should be preserved when the 
vibration is included, the following conditions must be satisfied 

~x/V~(x I, F(x  1, )) = O, i = 1, 2 X 2 , X 2 

whenxl  = x2 = 0. By (2.13), these conditions take the form 

Elabl + V32 = 0 ,  E23b 2 - V31 = 0 (2.14) 

In this case we have the following expansion for the vibrogenic potential energy 

2V~ = -f'33 + P x2 + 2qxlx2 + rx2 +...  

P ---- (g33 --  E:I! )hi  2 - g22 - 2Vl2b l  + E!3c30 + 1/~ F~23c2 I 

q = x 12 - bl/~2EI2 -4- b I (VII  - -  V33) "F b 2 (V33 - -  V22)  + I/3 (E!3C21 + ~:23CI 2 ) (2.15) 

r = (E33 - E22)B~ - ~11 + 2v2162 + I~E13Cl2 + E23c03 

Since V. = gx3 = gF(xl, x2), from (2.12) and (2.13) we obtain the following expansion for the total • g 
potential energy V = Vg = V~ 

2V = -e33 + (p  + gb I )x 2 + 2qxlx 2 + (r + gb 2)x 2 +.. .  

By Lagrange's theorem, the equilibriumx0 = 0 is stable if it is a point of strict minimum for V. For this 
to be the case it is sufficient for the following inequalities to be satisfied 

p + g b  I >0,  r + g b  2 >0,  ( p + g b l ) ( r + g b 2 ) - q  2 > 0  (2.16) 

On the other  hand, it follows from Lyapunov's theorem on the inversion of Lagrange's theorem [7] 
that the equilibrium is unstable if at least one of these inequalities is replaced by the opposite strict 
inequality. Note that the second inequality of (2.16) follows from the remaining two. 

We will give the simplest example of the use of these results Suppose a particle (a small solid bead) is constrained 
to move along an ellipse (a thin closed tube), which, without changing its shape and dimensions, executes vibrational 
motion in thexl,x3 plane. Then in (2.5) 11 = (rh, 0, r13), q = (0, q2, 0). We will assume that in the middle position 
one of the axes of the ellipse is vertical, so that its equation has the form 

• x?/a? + x /4-1 = 0 (2.17) 

In order to use the criteria of stability (2.16), we must transfer the origin of coordinates to the position of equilibrium 
x ° being investigated. This is achieved by making the replacement x ~ x + x ° and correspondingly 11 ~ rl + q x x °, 
q --~ q in expressions (2.10) for all eik, ×ik, Vik. Of these, only ~11, e13, 833, x22, v12, v32, can be non-zero in this case. 

0 The upper position of equilibriumx = (0, a3), by (2.14), is preserved during vibration, if the following equation 
is satisfied 

~-13 -al(l-82)V32 =0, 5=a31a j 

Here we have taken into account the fact that the local equation of the ellipse (2.7) in the region of the point (0, 
a3) has the form x3 = a 3 -  x12a3/(2a2)+ . . .  so that bl = -8/av The condition of stability is the first inequality of 
(2.16), which we can now write in the form 

~2 (g33 --I~11 )--(1 -- ~2)2a?~22 + 2a3 (1- ~2)Vi2 - ga  3 > 0 (2.18) 

It can also be written in the form 

82933 -[&l~ - ( 1 -  82)alq~] 2 - g a  3 > 0 (2.19) 

Hence it follows that by increasing the intensity of the vertical vibration we can achieve stability of the upper position 
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of equilibrium. As regards the horizontal and rotational vibrations, their influence always destabilizes the upper 
equilibrium, but it reduces to nothing when 8rl'l(Z) = (1 - 82)q~al for all x. 

The results for the lower equilibrium are obtained similarly. The condition for it to be preserved is 8e13 + 
al(1 - 82)v32 = 0, so that both equilibria are preserved when e13 = 0 and v32 = 0. It is stable when a condition, 
differing from (2.19) by the replacement of al and a3 by -a I and -a3, is satisfied. 

As can be seen, the vertical vibration makes it even more stable, but it may be destabilized by the action of the 
horizontal and rotational vibrations. 

When al = a3 we obtain the classical results [1-5] for a circular pendulum. 
It follows from (2.15) and (2.16) that the vertical vibration of the pendulum stabilizes while the horizontal and 

rotational vibrations destabilize. At the same time, their interaction may have both a stabilizing and destabilizing 
effect. 

3. A P O I N T  M A S S  ON A P U L A S T I N G  E L L I P S O I D  

We will specify an ellipsoid in R m, deforming with time, by the equation 

• (x, x) = ~[(At (x)x, x ) -  1] = 0 (3.1) 

whereA~ for all z and small ~ = 1/co is a positive-definite linear operator. We will assume that it depends 
2n-periodically on the fast time z = ~t, and, as e ---> 0, it allows of the asymptotic representation 

&(x) = Ao + escx)+ oce 2) 

Here S -- 0 and the operator Ao are positive-definite. Correspondingly, we can write Eq. (3.1) in the 
form 

Oo(X) + cop(x, x) = O(e 2) 

tl~o(X) = l~[(A0x, x ) -  11, gl(x, %) = I/2(S(%)x, x) 

The vibrogenic potential energy of the particle, which moves along the ellipsoid (3.1), can be calculated 
from (1.15). Taking into account the equalities ~(x) = VO0(x) = A0r we obtain (in tensor notation) 

V~= ( W x @ x , x @ x )  
8(A0x, Aox) , W = S'(x) @ S'(x) (3.2) 

Hence, V~o is defined by the operator W, which acts in the tensor square R m (~) R m = R m2. Its 
matrix is the averaged Kronecker square of the matrix (S'ik(Z)) of the operator S'(z). In coordinates we 
have 

V, = -  ".. =lS~S'kIXiXjXkX'~8 ". = aoajkxix k J (3.3) 

where (aij) is the matrix of the operatorA0. Since the operator S(x) is symmetrical for all x, among the 
coefficients in the numerator there are in all q(a + 1)/2 (q = m ( m  + 1)/2) different ones. By choosing 
the vibration appropriately we can obtain an arbitrary set of these parameters. 

We will consider in more detail the case when all the semiaxes of the ellipsoid retain their direction 
and one of them is vertical. The following equations are then satisfied 

Aoe j = aj2ej, S('~)ej = , s j ( x ) e j ,  j = 1 ..... m 

where el, • • •, em are vectors of a canonical basis in R m, and we have denoted the lengths of the semiaxes 
of the ellipsoid E by a l , . . . ,  am: (A0x, x) = 1, while sl(x) . . . .  , sin(x) are the eigenvalues of the operator 
S(x) ~. Expression (3.3) is simplified and becomes 

m 2 (" m Xj , , 

'Yij = $iSj 

If the j-th semiaxis of the ellipsoid oscillates as aj + erlj(Z) + O(e2), we have sj = -2Ja~. 
The averaged equations (1.13) and (1.14) can be written in the form 

(3.4) 
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x = ge,,, - VV~ - X V ~  o, ~ 0 ( ~ ) = 0  

w h e n  there is no vibration there are exactly two equilibria: an upper one x u = (0 . . . . .  0, am) and a 
lower one x t = (0  . . . . .  O, --am). To preserve these it is necessary for the vibrogenic force in them to be 
vertical. This condition is obviously satisfied in the case of the potential energy (3.4). 

We will now investigate the effect of vibration on the stability of the equilibria x I and x u. By Lagrange's 
theorem, for the equilibrium to be stable it is sufficient for the potential energy V to reach a strict 
minimum on it. As Lyapunov showed, when the second differential d2Vis non-degenerate, this condition 
is also the necessary condition (see [7], where some degenerate cases are also considered). 

Confining ourselves to the case when the equilibria are non-degenerate, we will calculate the second 
differential d 2 V  of the total potential energy V = V~o + Vg at the points x 1 and x u on the ellipsoid E. In 
the neighbourhood of each of these points, we can takexl . . . . .  Xm-1 as the coordinates on E. Expressing 
Xm in terms of xl . . . . .  Xm-1 in (3.4) from the equation of the ellipsoid E: (A0r, x) = 1 and expanding V~ 
in a Taylor series up to second-order terms, we have for both equilibria 

1 . m - I  _ 
V . -  o ~ z - - - f f ~ l u a m  + Y. X i X i  + . . .  r e ,  

i=l 

4 2 e , - - - -  
--am['Y,nm(~ i + - an, 

at 

For the gravitational potential energy Vg we similarly obtain 

ra-I 
Vg = +gara + ~,  xgix? + . . . .  ×5 = "g gain 

i=l 2 a  2 

The upper signs correspond to the upper equilibrium while the lower signs correspond to the lower 
equilibrium. 

The equilibrium is Lyapunov-stable if all its Poincar6 stability coefficients (see [7]) ×i = ×~ + ~ a r e  
strictly positive, and unstable if at least one of these is negative. As a result we obtain that the equilibrium 
is stable if the following strict inequalities are satisfied 

Tm,,,(E/2 +1~/4)-2Ti,, T-4gl(a~a3m)> 0, i =  1 ..... m - 1  (3.5) 

Here the upper sign relates tox  u and the lower sign relates tox  1. The equilibrium is unstable if at least 
one of these inequalities roughly breaks down, so that the > sign is replaced by <. 

We will present some conclusions which follow from these conditions. 
The pulsation of the vertical semiaxis of the ellipsoid has a stabilizing effect on both equilibria x 1 

and x u while the effect of purely horizontal vibration is negligibly small at high frequencies co. In any 
case, it only has an effect in the critical case when equality occurs for certain values of i in (3.5). 
Nevertheless, the interaction of the horizontal and vertical vibrations, determined by the coefficient 
]tim , may both stabilize the equilibrium (when ~,/~ < 0), and destabilize the equilibrium (if ~tir n > 0). By 
increasing all the absolute values of-Y~n > 0 (i = 1 , . . . ,  m - l )  one can make both equilibria x ] andx u 
stable. 

The apparently paradoxical conclusion follows from (3.5) that the stabilizing intensity of the vertical 
vibration falls when the vertical axis of the ellipsoid increases. This ceases to be strange if we note that 
for an ellipsoid that is oblate along the vertical the particle has considerable fxeedom in horizontal 
motions. In the limiting case of a plane boundary its vertical vibration is, in general, unlimited. 

If the upper equilibrium is stable, the lower equilibrium will also be stable. If the lower equilibrium 
is unstable the upper equilibrium will also be unstable. 

When 'Ymm = 0 (then also all 'Yim = 0)  the upper equilibrium is unstable while the lower one is stable. 
We will increase Ymm, assuming the remaining parameters to be fixed. Then the lower position of 
equilibrium remains stable, while for large Ymm, as can be seen from (3.5), the upper equilibrium also 
becomes stable. 

Suppose that, for certain values of the parameters Ymm and Y~m, both equilibria are unstable. The critical 
value of the parameter Ymm for this equilibrium is that for which at least one of the stability coefficients 
vanishes. If Y~n is the greatest critical value for x u, then, when Ym,,, > ' / *m both equilibria are stable. 
When Ymm, on increasing, intersects the value Y~,n, then, by Poincar6's theory [7], a pair of stable equilibria 
of the averaged system--quasi-equilibria of the initial system (or several pairs; in the case of ellipsoids 
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of revolution even a continuum) will branch out from x u. When Ymm is increased further they may 
not all disappear--the potential energy V should reach a maximum somewhere while the equilibria 
x t and x u are local minima for large Ymm. 

A similar bifurcation occurs when Ymm increases around the lower equilibrium, if it is unstable for a 
certain value of Ymm. Obviously the unstable equilibria also bifurcate---each time the sign of one of the 
stability coefficients changes. When Ymm becomes very large, we have the following asymptotic form 
for V 

1 4 l -  ' o?)  +o0) ,  

Hence we can conclude that all the equilibria, distinct from x t and x u, approach an equatorial ellipsoid 
Xm = O, x2/a 2 + x22/a 2 + . . .  2 2r oo + Xm-l/am-1 = 1 as Ymm - ~  • 

As can be seen, in this case also vibration may produce new equilibria of the averaged system. 
In the case of weightlessness (g = 0) the dynamics of a particle on a pulsating ellipsoid remains fairly 

high-grade. Note that the vibration of one single axis of the ellipsoid gives stable equilibria at its ends. 
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V. Shirayayev for help with the manuscript. 
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